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Abstract

In recent times, there is an increased interest in the iden-
tification and re-identification of people at long distances,
such as from rooftop cameras, UAV cameras, street cams,
and others. Such recognition needs to go beyond face and
use whole-body markers such as gait. However, datasets to
train and test such recognition algorithms are not widely
prevalent, and fewer are labeled. This paper introduces
DIOR - a framework for data collection, semi-automated
annotation, and also provides a dataset with 14 subjects
and 1.649 million RGB frames with 3D/2D skeleton gait
labels, including 200 thousands frames from a long range
camera. Our approach leverages advanced 3D computer
vision techniques to attain pixel-level accuracy in indoor
settings with motion capture systems. Additionally, for out-
door long-range settings, we remove the dependency on mo-
tion capture systems and adopt a low-cost, hybrid 3D com-
puter vision and learning pipeline with only 4 low-cost RGB
cameras, successfully achieving precise skeleton labeling
on far-away subjects, even when their height is limited to
a mere 20-25 pixels within an RGB frame. On publication,
we will make our pipeline open for others to use.

1. Introduction

Anthropomorphic features such as gait are of increased
interest for various applications such as activity recognition,
identity recognition and others. An increasingly interesting
aspect of this problem is gait recognition in both indoor and
outdoor settings. Lighting, viewing angle, proximity and
several other aspects are vastly different when seeing a per-
son indoors vs outdoors. A large body of research looks at
indoor, close-range images for gait and identity recognition
but not from long range. Further, it is more challenging to
have general pipelines that perform such tasks for both short
and long range.
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Figure 1. Cam view row d) is placed exactly opposite to c), hence
images appear to be horizontally flipped. see Figures 2 and 6.
a),b),c)-Closed range cam with reprojected 2d pose labels in green
dots (zoom in). d)Long range view e) reprojected gait keypoints.
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Dataset MoCap Pose Gallery | Multi-View

2D-pose | 3D-pose | long range | <25 pixel height

BRIAR [4]
Dronesurf [10]
OUMVLP-pose [14]
CASIA-B [18]
Gait3D [19]
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DIOR(ours)

Table 1. DIOR has two unique features. First, the inclusion of long range, 20-25 pixels, extremely low resolution subject data. Second, the
utilization of a Motion Capture system for pixel-accurate 3D/2D pose for half the gallery. * Around half, or 800k frames of DIOR pose
data are derived with the help of an indoor VICON system. The other 800k RGB frames are captured outdoor, with 4 Realsense D455

cameras.

This paper contributes to the advancement of skeleton
walking gait detection and recognition. Our primary contri-
bution is the development of a comprehensive dataset, cru-
cial for training and evaluating robust algorithms for gait-
based tasks both indoors and outdoors. A second challenge
in such datasets is accurate annotation of gait keypoints. To
this end, we employ a semi-automatic annotation process
that enables efficient and precise annotations at high speed
(sub-second per frame).

In indoor settings, we leverage a Motion Capture sys-
tem (MoCap) and 3D computer vision techniques to achieve
pixel-level accurate labeling of 2D Gait Key-points. By
leveraging accurate 3D gait keypoint information from mo-
tion capture systems and perspective geometry, we are able
to accurately localize our RGBD camera array, and re-
project precise 2d gait keypoints onto RGB frames. The
accuracy and reliability demonstrated by our method in in-
door scenarios have promising implications for applications
such as 2D/3D pose detection and multi-view 2D/3D gait
recognition.

However, outdoor settings present additional challenges.
Setting up motion capture systems in the outdoor settings is
generally cost prohibitive. We do away with relying on the
motion capture system, and use 4 RGB cameras for similar
annotation. Further more, varying lighting conditions, oc-
clusions, and the distant nature of the subjects add consider-
able difficulties. To address these complexities, we have de-
veloped a hybrid pipeline that combines the strengths of 3D
Computer Vision and learning methodologies. We place 3
RGB cameras in the close range, for existing learning meth-
ods to identify 2d gait keypoints on RGB images. We place
1 RGB camera at long range. With multi-view, 2D skeleton
keypoint labels from existing learning methods, we trian-
gulate 3D skeleton keypoints. We then re-project the 3D
skeletons onto the long range camera frames. We achieve
skeleton labeling on long range subjects, even when the
subject occupies a limited 20-25 pixel within an RGB
frame. Further, utilizing the 3D Computer Vision, we can
create dataset with partially occluded subjects in the long
range frames. Sample images are shown in Figure 1. Cam-
era view row d) is placed exactly opposite to c¢), hence im-

ages appear to be horizontally flipped. see Figure 2 and 6
for placement details.

This progress brings us closer to realizing long-range gait
detection in outdoor environments, potentially benefiting
perimeter security, public safety, and autonomous driving
applications.

Our work makes the following contributions:

e Dataset: A novel dataset that captures subjects in-
doors and outdoors, with two different sets of clothing
each. This includes a gallery with images from mul-
tiple angles and heights. The outdoor dataset also has
long range images where the subject is less than 25
pixels in size. Details are described in Table 1.

e Semi Automated annotation pipeline: A novel
pipeline for indoor MoCap assisted environment to re-
project and auto-annotate MoCap 3d gait onto RGB
camera frames. And a novel vision pipeline that can
annotate 3D/2D gait keypoints in the outdoor environ-
ment with 4 low-cost RGB cameras.

¢ Baseline Evaluation: As a baseline, we test our
dataset with multiple gait-based recognition papers for
demonstration. This can help set a baseline for future
advancements in this area using the DIOR dataset.

All the data collection performed for this dataset are
in compliance with our approved IRB.

2. Related Work

Gait Recognition Dataset: There is a large collec-
tion of gait recognition data-sets available including and
not limited to BRIAR [4], Gait3D [19], Dronesurf [10],
OUMVLP [14], CASIA-B [18]. To the best of our knowl-
edge, none of the existing datasets contain long range skele-
ton labels where subjects appear less than 25 pixels in
height. The Dior dataset has long range image with low
pixel count subject and 3D/2D skeleton labels. A detailed
comparison of features is in Table 1. DIOR has two unique
features. First, the inclusion of long range, 20-25 pixel, ex-
tremely low resolution data. Second, the utilization of Mo-
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Figure 2. (1) MLKIT marks the 2D keypoints on all 3 RGB images, (2) we triangulate each to obtain 3D gait key-points, and (3) reproject

the 3D gait onto the long range view at 60 meters.

tion Capture system for pixel-accuracy indoor settings for
half the gallery.

RGB to 2D pose: AlphaPose [7], OpenPose [3] and
YOLOV7 [17] are trained on COCO [12]. COCO contains
66,000+ images of various environment and walking pos-
ture with annotated 2d pose. In comparison, our dataset has
800,000+ images with motion capture 2d pose annotations,
but limited to indoor environment.

Automatic 3D/2D pose Annotation and long range
data: Typically, one or more learning based pipelines are
used for automatic 2D pose annotation, namely Alpha-
Pose [7] and OpenPose [3]. Moreover recent work like
YOLOvV7 [17] can also help on these tasks. The use of such
models are limited to certain range and minimum subject
resolutions, and as the subjects appear further away, and
span fewer pixels, they are no longer effective. We will
demonstrate this point through our RGB-to-2D-pose base-
line in 4.2.1. This results in an interesting phenomenon in
existing datasets — The datasets with long range data do not
have gait pose labels, and the datasets with gait pose labels
do not have long range data. DIOR however, has both long
range data, and 3D/2D pose labels.

3D Computer Vision: Uniquely, DIOR leverages knowl-
edge from multiple-views geometry [©], in accurately local-
izing cameras for both their orientation and translation. We
use OpenCV [2]’s PnP [&] [1 1] library, in motion capture
settings; We use GTSAM [5] [6]’s bundle adjustment (SfM)
code base in the outdoor settings with only RGB cameras.
Having the accurate camera extrinsics, we can then triangu-
late and re-project the 3D and 2D points. We will go over
these details in section 3.

Skeleton Based Person RelD: In the proposed work we
evaluate skeleton (keypoint) based gait recognition meth-

ods from recent works. We evaluate a homogenous multi-
axial mixer called GaitFormer [13]. Along with this we
also evaluate GaitMixer [|3] which is a hetrogenous multi-
directional mixer design, combining a spatial self-attention
mixer and a temporal large-kernel convolution mixer. This
combination enables the model to capture intricate multi-
frequency patterns within gait feature maps. . [13] showed
that though Gaitformer cannot model high frequency com-
ponents, GaitMixer can concentrate on both high-frequency
and low-frequency components along both temporal and
spatial axes in feature maps. In contrast to attention based
methods, we also evaluate graph based architectures on
DIOR. GaitGraph [15] combines skeleton poses with Graph
Convolutional Network (GCN) to more discriminative per-
son features.

3. Approach

Our work is in two parts - semi-automated annotation for
indoor and outdoor data. The high level ideas are similar
(shown in Figure 2) — establishing a camera array where
camera extrinsic parameters (position and orientation) are
accurately estimated, then triangulate 3D points based on
the 2D points on a portion of the cameras. Then reproject
the 3D points to the other portion of the camera’s frames as
2D labels.

NOTE: Estimation of the target group of RGB camera ex-
trinsics and associated corrections form the bulk of the man-
ual part of the pipeline.

3.1. Indoor Setup and Annotation Pipeline

A motion capture system consists of multiple IR cam-
eras and can accurately estimate the position and orienta-
tion of its own camera array, then triangulate any IR re-



Figure 3. Indoor RGB images from 4 cameras, with 2d gait key-
points labeled (in blue). Zoom in to view each label.

flective markers in its capture volume (mm accuracy). The
subjects wear 33 markers according to Vicon Plug-in gait
spec. The system can capture the markers with labels at
100Hz, which results in mm level accurate 3D pose data.
Therefore, the system already covers the 2D-3D part of the
2D-3D-2D work flow. We then only need to estimate our
RGB camera’s position and orientation, then reproject the
3D gait keypoints onto the images captured by those cam-
eras as 2D pose.

Figure 3 shows an example set of 4 frames captured at
the same time by 4 cameras. Figure 7 highlights the re-
projection’s pixel accuracy. We have a Vicon motion cap-
ture system for use. We will use ”Vicon” and “motion cap-
ture system” to refer to our setup.

3.1.1 Preliminaries: Camera Model

We use OpenCV’s pinhole camera model. K represent the
3x3 camera intrinsic matrix. d represent the distortion coef-
ficients. R € SO(3) is the 3x3 rotation matrix representing
camera’s rotation in the world frame. % is the 3x1 vector
that represent the camera’s translation. R and ¢ together
are called the extrinsic parameters of the camera. The 2D
image point vector p,, are 3x1 vector in homogeneous co-
ordinates and are assumed to have been normalized against
its z value.

3.1.2 Camera Localization with PnP

We use the well-known perspective-n-point (PnP) computa-
tion to localize the cameras. The PnP method requires, as
input, the above mentioned intrinsic parameters K ,and dis-
tortion array D, and a corresponding set of (3D,2D) pairs.
Step 1 - obtain intrinsic parameters K, and distortion
array D - We use Intel D455 cameras for convenience as it
provides its own intrinsic parameters. For an arbitrary pin-
hole camera, one can use OpenCV’s tool to estimate the
their intrinsic parameters. It returns the camera’s rotation
R and its translation ¢.

Step 2 - obtain (3D,2D) pairs - Vicon already provides 3D

data and we now need to manually mark the visible 2D
markers on 1 frame with gait labels. Our semi-automated
pipeline requires us to identify visible markers in an im-
age manually which registers their image coordinates. This
establishes several (3D,2D) pairs. In practice, we found
that it is done best when the subject is facing directly
towards/away from the camera with their arms extended.
Then we can pick out around 10-20 pairs.

Note: This manual step needs to be done only once, for
each camera, for the entirety of the capture session. It would
be ideal to tighten the cameras onto their tripod, record as
many subjects as possible in one go. Any minor change in
camera position requires the manual step to be repeated. In
practice, we typically will perform this step only once for
all data captured in a single day.

Step 3 - Camera Localization We now have K, d and the
(3D,2D) pairs. We use PnP algorithm to obtain the camera’s
rotation R and its translation ¢.

3.1.3 3D-2D re-projection

With camera intrinsics K, d,and extrinsics R, t, for any 3D
point p;,, we can calculate its corresponding re-projected
2D coordinate p,, in an image using perspective geometry:

Py = KR (pgy — t) (D

Note: The obtained p,, is in homogeneous coordinates and
therefore must be normalized against its z value.
We can now find all 3D point’s 2D position on all images.

3.1.4 Hardware setup, Timing and data synchroniza-
tion

Ideally, the motion capture system should be triggered at the
exact same time as all the RGB cameras. In practice, this is
quite challenging. The next best thing is to have each im-
age timestamped by ROS and we manually observe 1 frame
offset parameter between the RGB cameras and the motion
capture system by going through the re-projected frame re-
sults.

To achieve this, we use two computers synchronized with
Network Time Protocol (NTP) and each is connected to two
RGB cameras. We use a low-latency access point to es-
tablish a local area network that also connects to the Vi-
con work station. Using Vicon Nexus’s software, one can
trigger a UDP broadcast at the same moment as capture
start/end. In practice, we observe that this still results in
average 12-16 frames delay in the starting of RGB camera
arrays.

3.2. Outdoor Setup and Annotation Pipeline

In the outdoor settings, we do not have an off-the-shelf
motion capture system. Instead, we first accurately estimate



Figure 4. Long range captures under strong sun light exposure and
partial occlusion. Note that the occluded scenario is for demon-
stration purpose, and not part of our data set.

the position and orientation of 3 RGB close range cameras.
We then use frames from 3 cameras with MLKIT 2D pose
label to triangulate each 3D gait keypoint. Lastly, we re-
project the 3D gait keypoints onto the images captured by
all cameras, including the 1 long range RGB camera as 2D
pose. This 2D-3D-2D process is slightly different than be-
fore.

Note: It should be noted the MLKIT estimation of 2D
pose on the long range camera is not possible since the
subject appears as less than 25 pixels in height. See sec-
tion 4.2.1.

Note: For long range labeling, the method is robust to
occlusion and direct sun exposure, since it only relies on
the geometry relationship between the camera to reproject
images. See Figure 4.

3.2.1 Camera Array Localization with Bundle Adjust-
ment

To accurately localize cameras as well as ensure consistency
across views, we utilize a well-known method called bun-
dle adjustment [16] [1]. It is the process of using image fea-
tures across views to iteratively identify the camera location
as well as corrected reprojection of the features for overall
consistency. We use the GTSAM [5]’s Bundle Adjustment
library to localize our closed range camera array. This li-
brary requires, as input, each closed range camera’s intrin-
sic parameters K1, K5, K 3..., initial estimated orientation
and position of each camera (Ry,t1), (R2,t2), (R3,t3)...,
and a corresponding set of (3D,2D) pairs for each camera.
Unlike the above example, we use multiple frames here in-
stead of only one.

The output is the optimized camera array extrinsic pa-
rameters - (R7,t7), (R, t5), (R3,t5)....
Stepl: obtain camera intrinsic K This is exactly the
same as stepl of 3.1.2
Step2: obtain initial estimations of camera extrinsics
(Ry,t1), (Ra,t2), (Rs,t3)... One can use a larger April-

Tag for this task, or, manual tape measurement. The point
is the initial estimation does not have to be exactly correct,
it will be optimized later by GTSAM. See figure 5.

We use manual measurement of rough camera positions,
with the assumptions that the cameras points at the center
of the coordinate system. Through this, we have 3 mea-
sured camera translations %1, 5, t3, and we can obtain the
orientation by:

cosfl, —sinf, O 1 0 0
R; = [sinf, cosf, O 0 cosf, —sinf,
0 0 1 0 sinf, cosf,

2

where 6, is the elevation angle:

_Tr [v2 2
0, = 5 atan2(tz, 1/t7, + tiy) 3)

and 6, is the azimuth angle:
Y
0, = 5 atan2(tiy, tiz) )

Step 3: obtain 2D pose with MLKIT Learning Pipeline
for short range cameras: We first obtain the 2D pose for
all images of each camera in a sequence, label each frame
with MLKIT, then pick out the first 400 frames of each cam-
era. The frames from different cameras are synchronized
by their time stamps. The 1200 total frames can triangulate
3D points in the first 400 time instances when the first 400
frames are captured by each camera.
Step 4: Obtain 3D pose by multi-views triangulation:
Various methods for triangulation exist, for clarity, we show
our exact method here. Assume at a given time instance, a
joint is marked by MLKIT in 3 different camera images as
3 2D points Py g1, Pagas Pagsz Where 1, 2, 3 subscripts are the
camera numbers. We also have each camera’s intrinsic pa-
rameters K, Ko, K3..., initial estimated orientation and
position of each camera (R1,t1), (Ra,t2), (R3,13)..., we
need to find a single 3d point from these information ps,
Each 2d point p,,; marks a ray along with its camera’s
parameters, where the ray direction is

¢i = RiK; Py )
And the ray origin is

ki=t, (6)

Thus with scalar w; the ray end point can be described as
k; + w;c;. Assume that the 3 rays intersect at one point:

ki1 +wicy = ko + wacs = k3 + wses @)

we can also write the above as three separate equations:

ki1 +wicy = ke + wacy


https://developers.google.com/ml-kit/vision/pose-detection

Figure 5. Highlighting the accuracy of camera extrinsic and 3D
point position, after Bundle Adjustment. Zoom in to observe 2D
gait keypoints. The red points are from MLKIT label. The green
points are re-projected from the triangulated 3D pose. We observe
an average of 5 pixel correction after bundle adjustment

ki +wiecr = k3 +wses

ks +wacy = k3 + wsces

We convert the above 3 equations system into its Ax = b
matrix form:

c1 —Cy 0 w1 k2 — k1
C1 0 —C3 Wy | = k3 — kl (8)
0 ¢ —c3| |ws ks — k2

Note that ¢;, k; are 3x1 column vectors, the above matrix
has dimensions (9x3)(3x1)=(9x1).

We can now use linear least squares to find # =
[w1, wa, U/3]TI

xz=(ATA)1ATD )

with [w1, ws, ws]T found, we can then take the average
of 3 end points as the triangulated ps:

1
P3q = g(’ﬁ +wiey + ko + wacy + ks + wsez)  (10)

Step 5: Refined camera extrinsics with GTSAM Bun-
dle Adjustment: We now have the required inputs, namely
K,,K,, Kj..., initial estimated orientation and position
of each camera (Ry,t1), (R2,t2), (R3,t3)..., and a corre-
sponding set of (3D,2D) pairs for each camera. We can now
use GTSAM(SfM) to obtain the optimized camera array ex-
trinsic (R;, ¢}), (B3, t3), (B3, 3)...

For a comparison of before/after bundle adjustment, see
Figure 5.
Step 6: Triangulate 1 more time for optimized 3d points:
Repeat step 4 but with optimized camera extrinsics.
Step7: 3D-2D re-projection for all cameras: This step is
exactly the same as Section 3.1.3, but uses the optimized
camera extrinsics here and optimized 3d points

Figure 6. Before(left) and after(right) long range camera extrinsic
manual adjustment.

3.2.2 Long Range Camera Initial extrinsic and manual
refinement

After we have optimized the close ranged camera’s extrin-
sics, we can start refining the long range camera’s extrin-
sic. Closely related to step 2 in Section 3.2.1, we can
add/subtract A6 from 6, or 6,, which has the effect of ad-
justing the reprojected skeleton in the vertical and horizon-
tal images coordinates, respectively, until the reprojected
skeleton aligns. It is recommended during the setup process
to place the long range camera on one of the coordinate’s
plane axis, X or Y. In our setup we chose the positive Y-
axis. With such setup, we can also add/subtract a small Ad
in meters, to the long distance axis of ¢. changing this vari-
able has the effects of shrinking/magnifying the skeleton on
image. For an example of such adjustment, see Figure 6.

Note: This procedure only has to be done once per col-
lection day.

4. Evaluation

In this section, we evaluate our 3D/2D pose quality in
three seperate parts — the quality of indoor 2d pose data;
outdoor closed range 2d/3D pose data; and outdoor long
range 2D/3d pose data.

For each part we present a quantitative metric. In multi-
view camera evaluation, the accuracy of the 3D/2D points is
typically presented as 3 re-projected 2D pixel residual error
in pixels, in short, reprojection error.

4.1. Indoor Data Evaluation
4.1.1 Reprojection Error

The 3D data captured by a motion capture system are ac-
curate to the mm level and are typically regarded as ground
truth. Therefore, we only evaluate the 2d pose accuracy. To
do so, we first randomly select 100 2D points from the data
set to manually label, then compare to the corresponding
2d labels from 3D-2D projection 3.1.3. Then we use the
same reprojection error Equation 11. The re-projection er-
ror here is the difference between the re-projected 2D pose
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Pipeline Pretraining Evaluation In-1 In-2 In-3 In-4 Out-1 Out-2 (long range) Out-3 Out-4
GaitGraph ~ CASIA-B DIOR 8.418 8.418 8418 10.20 6.888 8.163 13.52 11.22
GaitMixer =~ CASIA-B DIOR 5.612 7.653 6378 7.908 8.418 8.418 1020 12.50
GaitFormer CASIA-B DIOR 6.888 7.653 5.867 6.633 9.949 7.143 11.99 10.71

Table 2. Cross-domain Rank@1 results from 3 pipelines. The network weights are obtained from author provided checkpoints without
additional training. in-n” are indoor camera numbers. “out-n” are outdoor camera numbers. ’out-2” is the long range camera, it’s accuracy
is reflective of using the long range camera sequences as probe, and the rest as gallery.

Figure 7. This picture highlights the label’s pixel accuracy in the
indoor environment. The reflective markers are white in color, the
2d labels are in red dots, their names are in blue text.

Indoor Subject ID vs Reprojection Error

Reprojection Error (Px)

Indoor Subject ID

Figure 8. Reprojection error in the indoor motion capture envi-
ronment.To get a sense of image distance by pixel, see a 5 pixel
residue example in Section 5.

from vicon p,;.,,, and randomly selected manual label 2D
pose py,. The result is shown in Figure 8.

4.2. Outdoor Evaluation
4.2.1 Infeasibility of Long-Range Detection

For outdoor data, a mechanism to identify 2D gait keypoints
is to apply a standard gait recognition algorithm on the long
range camera view. We evaluated 3 different pipelines as is,
without additional training. They are AlphaPose, MLKIT,
YOLOV7. We evaluate on both the original long range RGB
images, and a cropped, zoomed-in version of the RGB im-
age. The evaluation is done to the entire set of 211798 long
range raw images and the zoomed in version of the im-
ages. The result in shown in Table 3 and Table 4. From
Tables 3, 4, we can see that the detection accuracy is 12%
for MLKIT and goes down to 0% for correct detections.
Therefore, we determined that labeling long range views
directly using a gait pipeline was not feasible. We opted
to use close range cameras and reprojection from the close
cameras to the long range camera for gait labeling in the

Pipeline  raw detection zoomed detection

MLKIT 12.32 1.02
YOLOvV7 1.15 2.03
AlphaPose 6.84 4.60

Table 3. Across the entire set of 211798 long range frames, The
first column is the percentage of detection over none zoom-in
images. The second column is the percentage of detection over
zoomed in images. An example of zoomed-in frame is shown in
figure 10. Which is a 720p frame zoomed in 4X towards the image
center, with raw dimension 320x180

Pipeline  raw success zoomed success

MLKIT 0.0 0.0
YOLOv7 0.0 0.005
AlphaPose 5.57 0.36

Table 4. Different than table 3, we evaluate the detected points
against our skeleton gait keypoint’s bounding box. If 20 percent
of the pipeline detected keypoints fall within this bounding box
then we count the detection as succesful. This criteria is rather
generous.

long range view.

4.2.2 Close Range Cameras Reprojection Error

A challenge in multi-camera gait keypoint recognition is
the error across the multiple views. We will use the re-
projection error to evaluate the accuracy of outdoor closed
range camera extrinsics, as well as the triangulated 3D
points. The re-projection error here is the difference be-
tween the re-projected 2D pose p, and the MLKIT label
2D pose p,,. The result is plotted in Figure 9.

1
€= ﬁ zn: \/(pr - de)T(pr - de) (11)

4.2.3 Far Range Camera Accuracy

We use a coarser form of re-projection error on the long
range camera as there are no MLKIT labels. Manual label-
ing of each join point is difficult and ineffective on subjects
that appear in such low pixel counts. Instead, we will man-
ually select rectangles 14245 random far range frames, and
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Figure 9. Evaluation of reprojection error, over the entire set of

600k+ out outdoor closed range camera images. To get a sense of
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Figure 10. We manually label 14245 frames with bounding boxes
for our quantitative evaluations. The picture shows the labeling
interface.

Intersection of skeleton with rectangle percentage vs Walk Name _Total Percentage: 96.69%
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Figure 11. Across the entire set of randomlly selected 14245 long
range images, 96.69 percent of the long range 2d pose falls within
the manual bounding boxes.

count the percentage of 2D labels that falls into the bound-
ing box of the subject. See Figure 10 for an example of
using a script to selecting a rectangle on 1 frame. Figure 11
shows percentage of gait keypoints within label rectangles,
split by subject id.

4.2.4 Gait Recognition (Re-ID)

We evaluate GaitGraph [15],GaitMixer [13] and Gait-
Former [13], with checkpoints trained on casia-b dataset. In
this cross-domain settings, we use sequences captured from
indoor setttings and closed range camera in outdoor set-

tings as the gallery, and using long range camera sequences
as probe. we report Rank-1 subject re-identification accu-
racy. The result can be seen in Table 2. All RelD eval-
uations are performed using 300 frame sequences. As it
can observed in Table 2, for long-range scenario (out-2),
GaitMixer provides the best performance, followed by Gait-
Graph and GaitFormer.

5. Dataset

5.1. Statistics and collection protocol

There are 1,649,918 total frames in our dataset, where
802726 frames are from indoor MoCap settings, and
847193 frames from ourdoor settings. There are a total of
59,530,485 2d gait key-points. And approximately 14.88
millions of 3d gait keypoint. For the indoor settings, we ad-
ditionally have each subject’s 360degree profile, from two
camera angles, frontal and 45 degrees downwards, for a
total of around 20,000 images. For the outdoor setting’s
847193 frames, 211798 frames are from the long range
camera.

There are 14 subjects and 112 sequences total. 56 indoor
sequences from 14 subjects with 2 walk patterns and 2 out-
fits. 56 outdoor sequences from the same 14 subjects with
2 walk patterns and 2 outfits.

Each walk lasts 2 minutes, with 30FPS capture rate, thus
yields around 3600 frames on each camera. There are 4
cameras in both indoor and outdoor settings. In the outdoor
setting 1 camera is place at approximately 60 meters. on
720p frame, subject apears as 20-25 pixels in height.

5.2. Annotation Time Cost

The indoor 800k frames took approximately 77hrs.The
outdoor 800k frames, including the 200k long range frames,
took approximately 42 hrs.The aggregated per frame time
cost is therefore around .2678 second.

6. Conclusion

This work presents DIOR, a first of its kind dataset with
indoor and outdoor data of 14 subjects performing various
walking and running activities in a limited space. The sub-
jects are also seen with multiple pieces of clothing. Each
image is annotated with gait keypoints for use by algorithms
that can use this anthropomorphic information. The dataset
and pipeline will be published openly for others to use upon
publication.

References

[1] Sameer Agarwal, Noah Snavely, Steven M Seitz, and
Richard Szeliski. Bundle adjustment in the large. In Com-
puter Vision-ECCV 2010: 11th European Conference on
Computer Vision, Heraklion, Crete, Greece, September 5-11,



(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

2010, Proceedings, Part Il 11, pages 29-42. Springer, 2010.
5

Gary Bradski. The opencv library. Dr. Dobb’s Journal: Soft-
ware Tools for the Professional Programmer, 25(11):120—
123, 2000. 3

Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh.
Realtime multi-person 2d pose estimation using part affinity
fields. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7291-7299, 2017. 3
David Cornett, Joel Brogan, Nell Barber, Deniz Aykac, Seth
Baird, Nicholas Burchfield, Carl Dukes, Andrew Duncan,
Regina Ferrell, Jim Goddard, et al. Expanding accurate
person recognition to new altitudes and ranges: The briar
dataset. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pages 593-602, 2023.
2

Frank Dellaert and GTSAM Contributors. borglab/gtsam,
May 2022. 3,5

Frank Dellaert and Michael Kaess. Factor Graphs for Robot
Perception. Foundations and Trends in Robotics, Vol. 6,
2017. 3

Hao-Shu Fang, Jiefeng Li, Hongyang Tang, Chao Xu, Haoyi
Zhu, Yuliang Xiu, Yong-Lu Li, and Cewu Lu. Alpha-
pose: Whole-body regional multi-person pose estimation
and tracking in real-time. [EEE Transactions on Pattern
Analysis and Machine Intelligence, 2022. 3

Xiao-Shan Gao, Xiao-Rong Hou, Jianliang Tang, and
Hang-Fei Cheng. Complete solution classification for the
perspective-three-point problem. [EEE transactions on
pattern analysis and machine intelligence, 25(8):930-943,
2003. 3

Richard Hartley and Andrew Zisserman. Multiple view ge-
ometry in computer vision. Cambridge university press,
2003. 3

Isha Kalra, Maneet Singh, Shruti Nagpal, Richa Singh,
Mayank Vatsa, and PB Sujit. Dronesurf: Benchmark dataset
for drone-based face recognition. In 2019 14th IEEE Interna-
tional Conference on Automatic Face & Gesture Recognition
(FG 2019), pages 1-7. IEEE, 2019. 2

Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua.
Ep n p: An accurate o (n) solution to the p n p problem.
International journal of computer vision, 81:155-166, 2009.
3

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollar, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
Computer Vision—-ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pages 740-755. Springer, 2014. 3

Ekkasit Pinyoanuntapong, Ayman Ali, Pu Wang, Minwoo
Lee, and Chen Chen. Gaitmixer: skeleton-based gait rep-
resentation learning via wide-spectrum multi-axial mixer.
In ICASSP 2023-2023 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages
1-5. IEEE, 2023. 3, 8

Noriko Takemura, Yasushi Makihara, Daigo Muramatsu,
Tomio Echigo, and Yasushi Yagi. Multi-view large popu-

[15]

(16]

(17]

(18]

(19]

lation gait dataset and its performance evaluation for cross-
view gait recognition. IPSJ transactions on Computer Vision
and Applications, 10:1-14, 2018. 2

Torben Teepe, Ali Khan, Johannes Gilg, Fabian Herzog, Ste-
fan Hoérmann, and Gerhard Rigoll. Gaitgraph: Graph convo-
lutional network for skeleton-based gait recognition. In 2021
IEEE International Conference on Image Processing (ICIP),
pages 2314-2318. IEEE, 2021. 3, 8

Bill Triggs, Philip F McLauchlan, Richard I Hartley,
and Andrew W Fitzgibbon. Bundle adjustment—a mod-
ern synthesis. In Vision Algorithms: Theory and Prac-
tice: International Workshop on Vision Algorithms Corfu,
Greece, September 21-22, 1999 Proceedings, pages 298—
372. Springer, 2000. 5

Chien-Yao Wang, Alexey Bochkovskiy, and Hong-
Yuan Mark Liao. YOLOv7: Trainable bag-of-freebies sets
new state-of-the-art for real-time object detectors. arXiv
preprint arXiv:2207.02696, 2022. 3

Shiqi Yu, Daoliang Tan, and Tieniu Tan. A framework for
evaluating the effect of view angle, clothing and carrying
condition on gait recognition. In /8th international con-
ference on pattern recognition (ICPR’06), volume 4, pages
441-444. IEEE, 2006. 2

Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Cheng-
gang Yan, and Tao Mei. Gait recognition in the wild with
dense 3d representations and a benchmark. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 20228-20237, 2022. 2



	. Introduction
	. Related Work
	. Approach
	. Indoor Setup and Annotation Pipeline
	Preliminaries: Camera Model
	Camera Localization with PnP
	3D-2D re-projection
	Hardware setup, Timing and data synchronization

	. Outdoor Setup and Annotation Pipeline
	Camera Array Localization with Bundle Adjustment
	Long Range Camera Initial extrinsic and manual refinement


	. Evaluation
	. Indoor Data Evaluation
	Reprojection Error

	. Outdoor Evaluation
	Infeasibility of Long-Range Detection
	Close Range Cameras Reprojection Error
	Far Range Camera Accuracy
	Gait Recognition (Re-ID)


	. Dataset
	. Statistics and collection protocol
	. Annotation Time Cost

	. Conclusion

