
Quadrobee: Simulating Flapping Wing Aerial Vehicle Dynamics On A
Quadrotor

Yuyang Chen1, Sawyer B. Fuller2 and Karthik Dantu1

Abstract— The RoboBee is a novel insect-scale flapping wing
Micro Aerial Vehicle that is envisioned to enable exciting
applications. While recent results have demonstrated full con-
trol as well as biomimetic behaviors such as perching, more
complex challenges such as perception and navigation still exist.
Typically, challenges in perception-based control can only be
solved by experimentation. However, such fly-size MAVs are
not widely available to researchers at large due to its intricate
manufacturing process and limited mechanical lifetime. To
facilitate the development of perception and control algorithms
of insect-scale MAVs, we explore an approach of simulating
flapping wing aerial vehicle dynamics on a quad-rotor. This
work performs detailed analysis of the transformation of control
inputs, and demonstrates feasibility by numerically simulating
basic flight patterns of models of a RoboBee as well as that of
a scaled quad-rotor.

I. INTRODUCTION

Developments in wing design, aerodynamics and flapping
wing control [1] are enabling a new class of tiny flying robots
with flapping wings, such as the Robobee (80 mg) (Fig-
ure 1) [1][2][3][4]. Their size and flight dynamics promise
to enable new applications including massively parallel op-
eration (such as crop pollination or distributed search) as
well as covert operation (such as surveillance). However, the
platforms are in the early stage of their development with
several challenges in sensing, control and coordination that
are yet to be solved.

A primary challenge is access to such platforms for
widespread experimentation. Such robots are produced in
specialized labs and not easily accessible to researchers at
large. Further, their nascent design process leads to manu-
facturing and durability challenges for large scale testing. It
is hard to develop estimation and control even with access
to the platform, since each robot takes about several days
to assemble and is available for experimentation for limited
time because of the limited mechanical lifetime of the flight
mechanism. Shown in Figure 1 is an image of RoboBee,
a flapping-wing aerial vehicle developed by the Harvard
Microrobotics Lab1.

The goal of this research is to simulate flight dynamics
of a flapping wing MAV on a more widely available plat-
form, the quad-rotor. Prior experiments have modelled the
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Fig. 1. An Image of the RoboBee as developed at the Harvard Micro-
Robotics Lab

Fig. 2. We aim to achieve identical accelerations by converting a flapping
wing MAV’s input to a quad-rotor’s input

aerodynamics of robot insect flight [1] [2] [3] [4] [5] [6] [7],
while others have considered perception and flight control
challenges of such a robot in simulation [8] [9]. However,
many challenges in perception based control can only be
encountered and tackled in the real world. This is because
many real-world phenomena exibit complexity that is hard
to model. Examples include turbulence, sound propagation,
and visual scenery. Accordingly, our goal is to provide a
testing platform aimed at facilitating the development of
perception and control systems targeted at insect-scale robots
by simulating their behavior on a more accessible platform,
a quadrotor. Our goal specifically is to take control input to
a flapping wing MAV, and compute the inputs to a quadrotor
that would mimic the flapping wing dynamics. We then pass
this on as input to the quadrotor, to simulate flapping wing
flight. While this sounds straight forward, a quad rotor is



Fig. 3. Visual Representation of Flapping-wing MAV Model

intrinsically different from a flapping wing MAV. We study
the flights that we can simulate and ones we cannot. We
present the challenges in performing such simulation on a
quadrotor, a detailed description of our modeling, simple
simulation results, limits of flight simulation on a simple
quad-rotor and a discussion on the limits of this work. We
intend to perform experimental validation of our simulation
to demonstrate the feasibility of our methodology in the
future.

We must explicitly state that this paper has no notions
of trajectory following. Instead, we aim to devise a system
where a quad-rotor can take a RoboBee’s input and produce
the respective RoboBee accelerations.

II. FLIGHT MODELS

In this section, we will outline both the linearized planar
model and the full model for a flapping wing MAV as well
as a quadrotor. For the full models, to simplify the rigid body
dynamics, we assume that (a) The origin of the body fixed
frame oB coincides with the center of mass (COM) of the
body, and (b) the axes of body fixed frame coincide with the
body principle axes of inertia. In this case, the inertia matrix
I is diagonal.

With the above assumptions, we use a generic 6 DOF rigid
body dynamics model:[

mI3×3 03×3

03×3 I

] [
V̇ B

ω̇B

]
+

[
ωB × (mV B)
ωB × (IωB)

]
=
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]
where m is the mass, I3×3 is the 3 × 3 identity matrix,
I = diag[JXX , JY Y , JZZ ] is the inertia matrix, V B =
[V Bx , V

B
y , V

B
z ]T is the linear velocity vector with respect to

body frame, ωB = [ωBx , ω
B
y , ω

B
z ]T is the angular velocity

vector with respect to body frame, FB is the total external
force vector, and τB is the total external torque vector. The
second term on the left hand side is the Coriolis-Centripetal
term.

A. Flapping Wing Dynamics Model

1) Linearized Planar Model: We show a previously pro-
posed linearized planar model of a flapping wing MAV [2]
for stability analysis. Assuming that the z − axis torque

is negligible, we can decouple the full model into two
independent planar systems.

Consider the state vector x = [θ, ω, v]T , where θ is a
scalar pitch angle, ω = θ̇ an angular velocity and v is
the lateral velocity (attached to body frame). As the rota-
tional dynamics is relatively slow compared to the flapping
frequency at this scale [10], this analysis only considered
averaged stroke forces. A test of this vehicle flapping in a
wind tunnel indicates that the drag force on the wing is nearly
linear with the incident air speed (Figure II-A.1). This is the
same for wind in x− and y− directions. So the model for
aerodynamic drag for both cases is fd = −bwvw where bw is
the wing drag factor and vw is the lateral velocity of the point
on the airframe at the midpoint between the two wings. When
the vehicle rotates at angular velocity ω, the velocity of the
wings linearized around θ = 0 is vw = −rwω+ v where rw
is the distance from the midpoint of the wings to the Center
of Mass. Therefore, the force from the aerodynamic drag is
fd = −bw(v− rwω), and the torque from aerodynamic drag
is τd = −rwfd = bwrwv − bwr

2
wω. Assuming the lift force

f1 approximately cancels out the weight mg, the lateral force
from the inclined gravity vector relative to the body frame
is equal to −mg sin θ ≈ −mgθ (because θ ≈ 0). We can
neglect second order cross-product terms in the generic 6
DOF rigid body model, and equate the force and torque to
velocities according to f = mv̇ and τ = Jω̇.

The equations of motion linearized around 0 pitch an-
gle θ can be written as the state-space dynamical system
ẋ = Abeex + Bbeeu, with the state vector x = [θ, ω, v]T

expressed in body frame, and input vector u = [τbee, Fbee]
T .

From [2]

Abee =


0 1 0

0 − 1
Jbee

bwr
2
w

1
Jbee

bwrw

−g 1
mbee

bwrw − 1
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bw

 (1)

Bbee =


0 0

1
Jbee

0

0 1
mbee

 (2)

2) Full Flapping Wing Dyanmics Model: [3] outlines a
stroke-average model and [2] outlines the aerodynamic drag.
Combining them, we have:

Fthrust =
1

2
ρβCL(ωG(ω))2(V 2

avg + V 2
dif ) (3)

τroll = rcpρβCL(ωG(ω))2(VavgVdif ) (4)
τpitch ≈ rcpVoffG(0)Fthrust (5)

τyaw =
1

8
rcpρβCD(ωG(ω)Vamp)

2(
1 − 2k

k − k2
) (6)

τBdrag = −bw(rw × V B + rw × (ωB × rw)) (7)

FBdrag = −bw(V B + ωB × rw) (8)



Fig. 4. Side view of Quadrotor showing gravity and wind speed in body
frame

where ρ is air density, β is the wing geometric constant,
CL/CD are the lift and drag coefficients of the the wings
respectively and ω is the flapping frequency. Transfer func-
tion G is empirically determined. Vavg, Vdif , Voff , k are the
inputs that determine the input sinusoidal voltage. rcp is the
distance from the shoulder to the center of pressure of the
wing. A detailed discussion of the parameters and variables
can be found in [3]. V B is the linear velocity vector with
respect to body frame. ωB is the angular velocity vector
with respect to body frame. rw = [0 0 rw]T , rw = 9mm
is the distance from center of mass to the shoulders. τBdrag
is the drag torque of MAV in the body frame. FBdrag is the
drag force of MAV in the body frame. Detailed information
regarding these parameters and variables can be found in [2].

To summarize:

τBbeec = [τroll, τpitch, τyaw]T (9)

FBbeec = [0, 0, Fthrust]
T (10)

τBbee = τBbeec + τBdrag (11)

FBbee = FBbeec + FBbeeg + FBdrag (12)

where τBbee and FBbee are terms on the right hand side of the
generic 6 DOF rigid body dynamic model. They determine
V̇ B
bee and ω̇Bbee.
3) RoboBee Actuator Delay Characteristics: In [1], in

order to achieve full control, the author uses the following
transfer function to approximate the RoboBee’s muscle-
thorax-wings system’s transient response.

X

V
=

A

meq(s)2 + beq(s) + keq
(13)

where meq, beq, keq are the equivalent mass, equivalent
damper coefficient and equivalent spring constant respec-
tively of the piezoelectric actuators. X is the displacement
of the piezoelectric actuator and V is the voltage applied.
Details can be found in [3].

B. Quad-rotor Dynamics Model

1) Quad-rotor Linearized Planar Model: We will present
a planar quad-rotor model (Figure 4) for stability analysis

in Section III. If z− torque and τBgyro is negligibly small,
we can decouple the quad-rotor into two planar systems.
Prior research [11], [12], [13], [14], [15] acknowledges that
a quad-rotor experiences drag force that scales linearly with
lateral velocity attached to the body frame.

fd = −uv

One could use onboard IMU readings to estimate the co-
efficient u [11]. Assuming the lift force f1 approximately
cancels out the weight mg, the lateral force from the in-
clined gravity vector relative to the body frame is equal to
−mg sin θ ≈ −mgθ. We can neglect the second order cross-
product terms from the generic 6 DOF rigid body model,
and equate the force and torque to velocities according to
f = mv̇ and τ = Jω̇. The equation of motion linearized
around 0 pitch angle θ can be written as a state-space
dynamical system ẋ = Aquadx + Bquadu, with the state
vector x = [θ, ω, v]T expressed in the body coordinate, and
the input vector u = [τquad, Fquad]

T . Where

Aquad =


0 1 0

0 0 0

−g 0 − 1
mquad

u

 (14)

Bquad =


0 0

1
Jquad

0

0 1
mquad

 (15)

2) Quad-rotor Full Model: [16] outlines the quad-rotor
model:

Fthrust = b(Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4) (16)

τroll = lb(−Ω2
2 + Ω2

4) (17)

τpitch = lb(−Ω2
1 + Ω2

3) (18)

τyaw = d(−Ω2
1 + Ω2

2 − Ω2
3 + Ω2

4) (19)

τBgyro = JTP

−ωBx (−Ω1 + Ω2 − Ω3 + Ω4)
ωBy (−Ω1 + Ω2 − Ω3 + Ω4)

0

 (20)

FBdrag = −uV B (21)

where Ωn is the nth propeller’s angular speed in rad/s, b
is the propeller thrust factor, l is the distance from propeller
to the center of mass, d is the propeller drag factor and
τBgyro is the gyroscopic torque that arise from propeller
speed imbalance. For more details about these parameters
and variables refer to [16].

To summarize:

τBquadc = [τroll, τpitch, τyaw]T (22)

FBquadc = [0, 0, Fthrust]
T (23)

τBquad = τBquadc + τBgyro (24)

FBquad = FBquadc + FBquadg + FBdrag (25)



TABLE 1
TABLE OF ROBOBEE (TOP) AND QUAD-ROTOR (BOTTOM) PARAMETERS

Parameter Unit Description
ρ kg/m3 Air density
β Wing geometric constant
CL Lift coefficient of the wings
CD Drag coefficient of the wings
rcp m Shoulder to wing center of pressure
rw m Center of mass to the shoulders
bw N/ms−1 Lateral drag factor of the wings
meq m Equivalent mass of piezo actuators
beq m Equivalent damper factor of piezo actuator
keq m Equivalent spring constant of piezo actuator

l m CM of quadrotor to the center of props
b Ns2 prop thrust factor
d Nms2 Prop drag factor
u N/ms−1 Lateral drag factor

KE V s /rad Electrical motor constant
KM V s /rad Mechanical motor constant
η Gear box coefficient
N Gear box reduction ratio
R Ω Motor Resistance
JP Nms2 Prop axis moment of inertia
JM Nms2 Motor axis moment of inertia
JTP Nms2 Total prop axis moment of inertia

where τBquad and FBquad are terms on the right hand side of the
generic 6 DOF rigid body dynamic model. They determine
V̇ B
quad and ω̇Bquad.
3) Quad-rotor Motor Delay Characteristics: The follow-

ing equation takes into account motor dynamics and shows
the relationship between propeller’s speed and motor’s input
voltage.

(JP + ηN2JM )Ω̇ = −KEKM

R
ηN2Ω − dΩ2 +

KM

R
ηNv

(26)

We summarize the parameters used and their descriptions
in TABLE 1 for reference. During experimental validation,
parameters in the TABLE 1 will need to be determined
according to methods introduced in [16].

III. OVERVIEW OF OUR APPROACH

This section discusses our approach to simulating flight
dynamics (Figure 2). For this discussion, we assume that
flapping wing flight is being simulated on a bitcraze crazyflie
2.0 quadrotor2 that is commercially available for purchase.
This quadrotor is about 10cm across, weighs 27g and has
enough computing and sensing to perform interesting sens-
ing/navigation flight experiments.

A. Resolving Size Differences

Perhaps the most pronounced difference between a 80mg
MAV and a 27g quadrotor is the difference in mass and
inertia matrix. A direct consequence is that the MAV experi-
ences different Coriolis-Centripetal effects compared to the
quad-rotor. In addition, the two vehicles experience different
aerodynamic drag. Thus, if one simply experiments on a
quad-rotor without any kind of force and torque scaling,
these differences are not compensated for.

2https://www.bitcraze.io/crazyflie-2/

For the rest of this discussion, we assume the proposed
MAV and quad-rotor model accurately describe the vehicles’
dynamics. And one would rely on controller robustness to
correct model error.

We can show that under the assumption above, through the
scaling of force and torque input, it is theoretically possible
to achieve identical motion under the same initial conditions
on two different vehicles with different masses and inertia
matrices if the actuators of the larger vehicle has enough
output capacity.

The analysis below follows the generic 6 DOF dynamic
model described in II. The goal is to equalize linear and
rotational acceleration in the body frame, so the states which
contain zero and first order pose information are identical in
the time domain:

V̇ B
quad = V̇ B

bee (27)

ω̇Bquad = ω̇Bbee (28)

It can be shown that, if the first order state is identical
,where ωB = ωBquad = ωBbee,V

B = V B
quad = V B

bee, then we
can achieve Equation 27 by:

FBquad =
mquad

mbee
FBbee (29)

regardless of the Coriolis-Centripetal term. This can be
shown by

mbeeV̇
B
bee + ωB × (mbeeV

B) = FBbee (30)

mquadV̇
B
quad + ωB × (mquadV

B) = FBquad (31)

V̇ B
bee =

FBbee
mbee

− ωB × (V B)

(32)

V̇ B
quad =

FBquad
mquad

− ωB × (V B)

(33)

Combining Equation 29 and Equation 33:

V̇ B
quad =

mquadF
B
bee

mquadmbee
− ωB × (V B) = V̇ B

bee (34)

Similarly, we can achieve Equation 28 by finding a specific
τBquad according to the Coriolis-Centripetal term and τBbee, we
again assume the equality of states ωB = ωBquad = ωBbee

ω̇Bbee = I−1
beeτ

B
bee − I−1

beeω
B × (Ibeeω

B) (35)

ω̇Bquad = I−1
quadτ

B
quad − I−1

quadω
B × (Iquadω

B) (36)

ω̇Bquad = ω̇Bbee (37)

I−1
quadτ

B
quad − I−1

quadω
B × (Iquadω

B) = I−1
beeτ

B
bee − I−1

beeω
B × (Ibeeω

B)

(38)

τB
quad = IquadI

−1
beeτ

B
bee − IquadI−1

beeω
B × (Ibeeω

B) + ωB × (Iquadω
B)

(39)



Strictly speaking, the ωB in the last two terms belong
to two different vehicles respectively. In our method, we
will use ωB = ωBquad, in other words ωBquad = ωBbee,
because we assume the states are nearly identical. Thus this
compensation would not required any information other than
the information from the quad-rotor’s own states.

from Equation 39, we can also show that when JXX =
JY Y and ωz = 0 for both quad and bee, we can replace
Equation 39 with simply τBquad = IquadI

−1
beeτ

B
bee.

To summarize, from the scaling of Equation 29 and
Equation 39, we can achieve the same force Equation 27
and torque Equation 28 resulting in the equality of linear
and angular accelerations respectively.

B. Resolving Dynamic Torque Difference

A RoboBee’s Center of Mass hangs below its wings.
When the RoboBee is performing flapping wing vehicle
maneuvers through the air, its wings experience aerodynamic
drag. Thus a RoboBee experiences drag force opposite to
the linear direction of travel, and drag torque proportional to
angular and linear velocity. Thus, it experiences pendulum
like dynamics. Such dynamics can be described by the
aerodynamic drag, shown in Equations 7,8. For a more
detailed discussion, one can refer to [2].

The effect of aerodynamic drag is unique to RoboBee.
A quad-rotor does not experience significant drag torque in
the roll and pitch axes. Instead, a quad-rotor experiences
gyroscopic effects produced by propellers rotation. Since
two of the propellers rotate clockwise and the other two
counterclockwise, there is an overall imbalance when the
algebraic sum of the rotors speed is not equal to zero.
If, in addition, the roll or pitch rates are also different
than zero, the quad-rotor experiences a gyroscopic torque
according to Equation 20. For the details, one can refer to
[16]. Therefore, we must compensate for such differences
between the dynamic torques so the quadrotor behaves like
the RoboBee.

The method to compensate for dynamic drag is straight-
forward. From Equations 7, 20, 39, to achieve the equality of
angular accelerations, the following is a mapping from τBbeec
to τBquadc:

τB
quadc = IquadI

−1
beeτ

B
beec

+ IquadI
−1
bee(−bw(rw × V B + rw × (ωB × rw)))

− IquadI−1
beeω

B × (Ibeeω
B) + ωB × (Iquadω

B)

− JTP


−ωB

x (−Ω1 + Ω2 − Ω3 + Ω4)

ωB
y (−Ω1 + Ω2 − Ω3 + Ω4)

0


(40)

Because of the non-holononmic nature of the quad-rotor,
it can only compensate for the force difference in the z-

direction. Therefore, according to Equation 29, we scaled up
the control:

FBquadc =
mquad

mbee
FBbeec (41)

C. Attitude Stability Analysis of the RoboBee and the Quad-
rotor

If the Quad-rotor is calibrated to function as a hovering
confirmation vehicle for the RoboBee, then it should pose a
equivalent if not a slightly harder hovering control challenge.
The central idea of this section is that by scaling the terms in
Equation 40 right hand side second term, we can make the
quad-rotor to pose an equivalent hovering control challenge.

We first look at the RoboBee’s linearized state-space
model (Equations 1, 2) and their stability, as outlined in [2].
The dynamics are asymptotically stable if the eigenvalues of
the matrix Abee all have negative real part. In [2], the authors
use additional control damping τc = −kdω to stabilize
the RoboBee. Thus τbee = τc + τd. and Abee,22 becomes
−( 1

Jbee
bwr

2
w + kd). By using the Routh-Hurtwitz criterion,

they determined the minimal kd, which is kd needed to
stabilize Abee is 0.9× 10−7, for both xz− and yz− planes.
Also, the kd determined from the planar model is applicable
to the full model.

By Equations 40, 41 we can achieve the mapping de-
scribed in Equations 29, 39. If we ignore the the non-
holonomic nature of the Quadrotor, it can be shown that the
Quadrotor’s linearized planar model is identical to that of the
RoboBee. However, because a quadrotor is non-holonomic,
it is not able to compensate for the drag force induced by
angular or linear velocity. To show the above claim, we
make a linearize planar mapped quad-rotor model without the
consideration of propeller gyroscopic torque. We take Equa-
tion 40 and throw away the last two terms in the right-hand
side (the third term disappear in a linearize model). Take this
modified Equations 40 and 41 into Equations 24, 25. Then
take Equations 24, 25 into the generic 6 DOF rigid body
dynamic model, take its planar version. The quad-rotor’s new
planar models become:

Aquad,mapped =


0 1 0

0 − 1
Jbee

bwr
2
w

1
Jbee

bwrw

−g 0 − 1
mquad

u

 (42)

Bquad,mapped =


0 0

1
Jbee

0

0 1
mbee

 (43)

to see why in Bquad,mapped the terms change from 1
Jquad

and
1

mquad
to 1

Jbee
and 1

mbee
respectively, and in Aquad,mapped

the second row is modified to be identical to that of
Abee. First refer to Equation 40, right hand side first term.
τBbeec is scaled by IquadI−1

bee. Thus in the planar version,



τquadc =
Jquad

Jbee
τbeec. Now, consider Equation 40 right hand

side second term. The part inside the bracket is converted
to bwrwv − bwr

2
wω in the planar model (which is τd). this

is also scaled by Jquad

Jbee
. Overall τquad =

Jquad

Jbee
(τbeec +

bwrwv−bwr2wω). Thus in the planar model ω̇quad =
τquad

Jquad
=

1
Jbee

(τbeec + bwrwv − bwr
2
wω). Which is why Bquad,mapped

and Aquad,mapped appear in such format.
By the same reasoning from Routh-Hurtwitz criterion,

for Abee, increase the magnitude of Abee,23 and Abee,32
, destabilizes the system. This means that linear velocity
induced torque and angular velocity induced force, respec-
tively, destabilize the system. On the other hand, increasing
the magnitudes of Abee,22 and Abee,33, stabilizes the system.
This means that angular velocity induced drag torque and
linear velocity induced drag force stabilize the system. this
is true because they are in the opposite direction from the
states that induce them.

We write − 1
mquad

u = −ζ 1
mbee

bw. so that ζ =
− 1

mquad
u

− 1
mbee

bw
.

ζ has the following physical meaning: ratio of lateral drag
acceleration induced under the same lateral velocity. It can
be shown that if ζ = 1, Aquad,mapped is a little easier to
stabilize because of the missing Abee,32 term. However, we
can show that in Equation 40, right hand side second term,
if we compensate the linear velocity induced drag torque
or angular velocity induced drag torque slightly differently,
we can make the quad-rotor an equivalent, if not a harder
vehicle to stabilize. To be specific, we reduce the magnitude
of Aquad,mapped,22 (which stabilizes the system) and increase
the magnitude of Aquad,mapped,23 (which destabilizes the
system).

From the view point of angular velocity damping, it
can be shown that if ζ = 1, one need to only scale up
Aquad,mapped,23 by a factor of β = 1.1481, or alternatively,
scale Aquad,mapped,22 by a factor of α = 0.4174, so the
minimum angular velocity damping to stabilize this vehicle is
the same as kd. Thus this quadrotor is quantitatively equally
hard to use angular velocity damping to stabilize compared
to a RoboBee.

The factors of scaling α, β, according to ζ can be de-
termined through Roth-Hurtwitz criterion by solving for the
same kd. Also, if the quadrotor is calibrated as a hovering
confirmation vehicle then its ability to mimic the same
trajectory of the RoboBee is degraded.

D. Resolving Actuator Transient Response Difference

Comparing the piezoelectric actuators of RoboBee with
the brush motors of a quadrotor, one can find very differ-
ent transient responses. For the quadrotors, the individual
motor’s response equation can be found in Equation 26. We
linearize this equation around a hovering operation point Ω0:

(JP + ηN2JM )Ω̇ = −KEKM

R
ηN2Ω − dΩ0Ω +

KM

R
ηNv

(44)

where Ω is the propeller angular velocity in Rad/s, v is the
input voltage in volts.

For the RoboBee’s muscle-thorax-wings system’s transient
response, the approximation can be found in Equation 13.

To define the transient responses more precisely, we will
present two different actuator groups with the following
state-space representation.

For RoboBee, ẋ = Ax+Bu:
ẋ1
ẋ2
ẋ3
ẋ4

 =


1

− keq
meq

− beq
meq

1

− keq
meq

− beq
meq



x1
x2
x3
x4

+


0 0
A
meq

0

0 0
0 A

meq

[v1v2
]

For the quadrotor,ẋ = Ax+Bu:
Ω̇1

Ω̇2

Ω̇3

Ω̇4

 =


α

α
α

α




Ω1

Ω2

Ω3
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where α, β are scalars, α = (KEKM

R ηN2 − dΩ0)/(JP +
ηN2JM ) , β = (KM

R ηN)/(JP + ηN2JM ). In theory, it
is possible through state feed back to place the poles of
quadrotor motor state-space to be the same as the poles
of Robobee Piezoelectric actuator’s. We first need to install
optical RPM readers on the quadrotor, to provide feedback
about the propellers’ angular velocity.

Then, through feedback , where u = r − Kx, the
quadrotor’s motor group state-space becomes:

ẋ = (A−BK)x+Br (45)

K is obtained by solving for the same real parts of the eigen-
values of quadrotor and Robobee’s state space. Although
we are not sure about the output equation y = Cx for
the RoboBee, we know the DC gain in relation to input as
described in [3].

Thus r can be determined through scaling described in
Equations 40, 41 and the DC gain of RobeBee and quadro-
tor’s actuator group.

More precisely, quadrotor’s desired steady state
U1, U2, U3, U4 will first be calculated through
Equations 22, 23 in relationship to RoboBee’s input
signal. Thus yss = U . Through this relationship:
yss = −C(A−BK)−1Br one can determine r

In experimental validation, it might not be possible to
achieve the desired pole-placements because of the limitation
of the quadtrotor’s power supply. While the above actuator
latency analysis was not incorporated into the simulations
below, we plan to tackle this in future work.

E. Specification of Valid Range of Operation of Simulated
Dynamics

A RoboBee is extremely agile rotationally, due to its
extremely low moment of inertia among the principle axes.
According to [3], a RoboBee (without additional sensors
attached) is able to produce maximum torque of 3mm×mN
in the roll direction. According to [2], a RoboBee’s x− and
y− axes inertia are 1.4 × 10−9kgm2. Therefore a RoboBee
is able to produce the maximum rotational acceleration of



2112.67rad/s2 in the roll direction. The number is slightly
smaller in the pitch direction. A quad-rotor, at the scale
of Crazyflie 2.0, is able to produce the maximum roll or
pitch angular acceleration of 537rad/s2 [17] [18]. This is
about 25% of a RoboBee’s capability. If additional sensors
are attached, the RoboBee’s moments of inertia among the
principle axes will increase. For example if we compare a
Crazyflie to the RoboBee with an oceli attached [2], the
performance percentage increases to 32.22%. The quad-rotor
would require about 33.33% of the RoboBee’s roll torque
capability. This can be shown from The flight data of the
RoboBee’s hovering [1] and take off [2]. The thrust to weight
ratio of a Robobee is approximately 2 [3] while that of a
Crazyflie is approximately 2.28. Therefore a Crazyflie is at
114% thrust capability.

F. The Summary of Our Approach to Compensate for the
Quad-rotor

• Take the control inputs from a RoboBee controller and
convert them into quad-rotor inputs by Equations 40, 41.

• Secondly, use state-feedback to make the motor’s tran-
sient response to be as close to that of the MAV’s
actuator transient response as possible (according to III-
D)

• Choose small quad-rotors with a favorable ζ. Ideally,
this ζ should be as close to 1 as possible. The quad-
rotor should also have the adequate maximum torque
capability as described in III-E.

IV. SIMULATION

We record the simulated flight data of three vehicles,
a flapping wing MAV, a quad-rotor calibrated to mimic
its motion and a uncalibrated quad-rotor. We labeled the
flapping wing MAV’s data as ”RoboBee”, the calibrated
quad-rotor as ”QuadroBee” and the uncalibrated quad-rotor
as ”Quadrotor”. Two identical LQR controllers (calibrated
for the RoboBee) are used for the RoboBee and the
QuadroBee’s control. This controller’s command is scaled
for the Quadrobee according to Equations 40, 41. A
separate LQR controller (calibrated for the normal quad-
rotor) is used for the uncompensated quad-rotor’s con-
trol. All the respective penalties among the Q matrices
are equivalent between the two LQR controllers. We will
use q = [θx, θy, θz, ω

B
x , ω

B
y , ω

B
z , X, Y, Z, V

B
x , V

B
y , V

B
z ]T

to represent the vehicles’ states where angles θx, θy, θz
and displacements X,Y, Z are referencing to the world
frame. The rest of the states are referencing to the
body frame. All three vehicles are given the initial states
q0 = [.08,−.08, 0,−.1, 0, 1, .15,−.15, .01, .1,−.3, 0]T and
the following way points:

q1 = [0, 0, 0, 0, 0, 0,−0.15,−0.15, .2, 0, 0, 0]T

q2 = [0, 0, 0, 0, 0, 0,−0.15, 0.15, .3, 0, 0, 0]T

q3 = [0, 0, 0, 0, 0, 0, 0.15, 0.15, .4, 0, 0, 0]T

q4 = [0, 0, 0, 0, 0, 0, 0.15,−0.15, .5, 0, 0, 0]T

Fig. 5. Both the RoboBee and the QuadroBee (quadrotor compensated
with our control scaling) uses the same altitude controller and LQR attitude
controller. The uncompensated quad-rotor uses a separate LQR controller
with the same state penalty Q matrix. The plot shows the compensated
quad-rotor has a much similar trajectory comparing to that of the RoboBee.

Fig. 6. Attitude error of the quad-rotors, referencing the RoboBee

which forms a square trajectory with increasing altitude.
All the vehicles starts out with q1 as the targeted way
point, then iterate for the next way point after each 500ms.
ζ is important for trajectory similarity since we can not
compensate for the lateral drag force with motors. When ζ =
1 the trajectories among the RoboBee and the compensated
quad-rotor (QuadroBee) is near identical. According to [11],
a 1kg quad-rotor has ζ = 0.1555, a lighter vehicle such as
a Crazyflie would have a more favorable ζ. We think the
assumption that this ζ fall between .1555 and 1 is relatively
safe to make. This ζ can be more precisely determined with a
motion capturing system and an IMU [11]. We used ζ = 0.6
in the following simulation. The video is also shown in the
supplement. The following are the simulation results without
considerations of the actuators’ delay. The trajectories are
visualized in Figure 5 and the state error are shown in
Figure 6, 7

To show how ζ influences the trajectory error, we simu-
lated the QuadroBee and RoboBee fights for the same tra-
jectory under different ζ. We listed two graphs (Figure 8, 9)
that shows average states error vs ζ. The state errors diminish
when ζ approaches 1.

V. DISCUSSION AND CONCLUSIONS

This paper shows a technique that enables quad-rotors to
simulate motion of a flapping wing MAV by converting the
input of a flapping wing MAV into the input of a quad-rotor
and compensating for scale and dynamics. We simulated the
flights of a flapping wing MAV and a quad-rotor with such



Fig. 7. Position error of the quad-rotors, referencing the RoboBee

Fig. 8. Compensated quad-rotors’ attitude error over time versus zeta,
referencing the RoboBee. We show the mean and variance.

converted input. The results suggest that trajectory error is
minimal, especially if the quad-rotor has similar acceleration
induced by the lateral drag as the flapping wing MAV. Our
results suggest that the smaller size quad-rotors, which have
favorable ζ and maximum torque capability, are ideal for
such simulation. The scope of this work is limited to a noise-
less simulated environment and the our simulations do not
consider actuator delays. Additionally, this work is perform
with the idealized model of the vehicles. Modeling error
on both the Robobee and Quadrotor will make Quadrobee
behave differently than the robobee. We intend to further
this investigation by considering actuator delay, sensor/input
noise and model inaccuracy in the future work. We also in-
tend to experimentally validate this simulation by comparing
actual RoboBee flight as well as small quadrotor flight with
our compensation.
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